
enParallel, Inc. Desktop 
Supercomputing Technology

‘Desktop Supercomputing on 
Graphics Processor Arrays’

J.B. Glenn-Anderson, PhD
CTO enParallel, Inc.

Copyright 2009 enParallel, Inc. All Rights Reserved



10,000-foot View - I

ePX Framework leverages GPU technology for hi-
performance scientific computing

PC form-factor, standard OS/Compiler technology
True supercomputer performance/scaling properties

‘Scatter-Gather’ vs. ‘Co-Processor’
Accelerates complete applications

Fundamental dynamic-dataflow application design 
representation,
Cluster/CPU/GPU Array (GPA) processing pipeline at 
generalized process queues.

Composite SIMD/SIMT (GPU), SMP (multi-core CPU), 
and Distributed (CLUSTER) processing model

Applied to dataflow-object/component-task/algorithmic-kernel
design representation hierarchy.



10,000-foot View - II

ePX Framework - Advantages:
Performance

Single GPU can deliver up to 500x acceleration (e.g. 
Monte Carlo, ‘stenciled’ linear [FDTD]).

Scalability
CPU/GPA pipelining hides CPU processes,
Extended tripartite linear-scaling ‘NNODE × NGPU ×
NTP/GPU’ across Cluster/CPU/GPA resources

Flexibility
Applicable to diverse algorithmic kernels, complex 
dataflow structures, (re: SIMT pipeline ‘reuse’),
Abstracted Distributed/SMP/SIMT processing model,
Portable/Reusable software.



10,000-foot View - III

‘ePX Framework’ – How it works
Dynamic-Dataflow design representation

Originating node elaborates an initial dataflow object
Dataflow object is parsed into component tasks processed locally or 
scattered onto Cluster according to a distributed-recursive
schema, (i.e. identical component-task processing at every node).
Non-Blocking (asynchronous) API calls are employed to overlap 
Cluster, CPU, and GPA processing.

Process-Scheduler
Structures all scatter-gather operations and process 
synchronization,
Algorithmic kernels are extracted from component tasks and 
mapped to local CPU/GPU resources

Hardware details are pushed to service methods on generalized 
process queues:

Cluster - multicore CPU - GPA



Graphics Acceleration is 
Driving PC Evolution..

Overall evolutionary trend whereby PCs supplant 
workstations in complex applications

Fundamentally a Moore’s Law phenomenon
Ever increasing demand for graphics performance

AutoCAD, PhotoShop, Gaming, et al.
PC Architectural Evolution

PCIe 2.0 x16
CPU/MCH integration, (re: ‘NorthBridge’ )
Direct MCP connection to CPU, (re: ‘SouthBridge’ )



CPU/GPU System 
Architecture..

Trend: PCIe 2.0 x16 supplants AGP for high 
performance graphics

PCIe 1.1 x16 offers 4GB/s bidirectional transfer rate,
PCIe 2.0 doubles to 8GB/s.

Trend: GPUs evolve as generic vector processors
Open APIs enable 3rd party application development.

‘Ganged’ GPUs on multi-PCIe slot motherboards, 
(re: NVIDIA SLI), not optimal for complex scientific 
applications:

CPU/Coprocessor use-model depends upon execution of 
single algorithmic kernel for extended periods.



GPU Advantages..
Hardware abstraction at API, standard software development flow 
and design representation.
Multithread Programming Model

Avoid FPGA HDL-bottleneck, development-flow complexity.
Parallel Acceleration

Single Instruction Multiple Thread (SIMT) processing model equivalent to 
powerful vector processor.

Cache parallelization
Addresses fundamental thread-synchronization problem,
Enables hi-RADIX concurrent memory access

Floating-Point Processing,
Avoids complexity and specificity of fixed-point implementations,
Obviates associated dynamic-range and loss-of-precision issues,
Double-Precision available.

Pre-existing Body of Algorithmic I/P,
Fast-Track to Scientific-Computing, Image/Signal-Processing market 
penetration.



GPU Hardware Architecture I

Single Instruction Multiple Data/Thread 
(SIMD/SIMT)

Cyclostatic multi-Processor
Parallel Cache

Shared Memory +Constant + Texture Cache
Parallel (‘O(102)’ ) Thread Processors

Hierarchical memory architecture organized 
CPU ↔ Device Memory ↔ Shared Memory
Separate Register Bank for each TP
Texture-Memory optimizes on spatial-temporal 
coherence



GPU Hardware Architecture II

Example GPU logical resource
organization



Desktop SuperComputer (DSC) 
Processing Model I

Why do we need it?
With consideration of complex applications, a fundamental performance 
issue emerges in connection with instruction-pipeline cyclostatic 
residency,
CPU/GPU-Coprocessor model is intended for single algorithmic kernel 
executing over long interval,
Scatter-Gather on GPU Array enables; (1) efficient SIMD/SIMT 
acceleration over diverse algorithmic kernels, and (2) full concurrency 
over all GPU instances.

4x fundamental ePX DSC principles..
Supercomputing-styled scatter-gather,
CPU/GPU process pipelining (scheduler),
Apply hierarchical coarse-grained-to-fine-grained parallelism based upon 
synergy of distributed, SMP, and SIMD/SIMT processing models,
Reuse GPU instruction-pipelines part and parcel of algorithmic-kernel 
scheduling.



DSC Processing Model II

GPU Applications Programming Interface (API)
Virtualizes GPU hardware in form of standard C/C++ function calls,
No requirement for specialized parallelizing compiler/OS runtime support

API implements streaming communications model
MTP instruction pipeline initialization
GPU WRITE/READ transaction buffer

‘Non-Blocking’ (asynchronous) GPU memcopies at CPU
Enables CPU/GPU process pipelining,
Enables GPA scatter-gather and GPU process pipelining,
Enables GPA load-balancing, and (GPU) instruction pipeline reuse

PC-based Supercomputing
Leverage existing Symmetric Multi-Processing (SMP) capability available 
on modern multicore CPUs,
Fully compatible with standard PC applications environment.

MSVS/GCC + Windows/Linux



Desktop SuperComputer 
Processing Model III

Concurrent CPU/GPU Execution,
(i.e. ‘process-pipelining’).



DSC Processing Model IV.. 
(Theory)



Dynamic-Dataflow Design 
Representation..

Example ‘dataflow-object’



Cluster Architecture..

‘Scatter-Gather’ Pathways

Hierarchical switch networks also
supported for scalable internode
communications.



Cluster Processing Model..

Overarching distributed-recursive cluster processing model 
(‘divide-and-conquer’).
Dynamic-Dataflow design representation is incrementally 
elaborated at originating node and propagated throughout 
cluster in form of dataflow-objects.
Any node parses a received dataflow-object into component-
tasks; locally processed component-tasks are further parsed 
into algorithmic kernels and applied to multi-core CPU/GPA 
process queues.
Remaining component tasks are distributed onto unused 
remote cluster resources.
Datapath may be optionally virtualized based upon data-
server transactions at the originating node.



Cluster/multicore-CPU/GPA 
Composite Process Schedule..



GPA-based Benchmark 
Projections

Nominal Experimental 
Platform: ∼2.3GHz dual-core 
(Intel) processor featuring 2GB 
RAM, WinXP OS, and a GPA 
consisting of 4x NVIDIA 
GeForce 8800GTX graphics 
cards, (i.e. 128 thread 
processors per GPU). 



Prototype Test Platforms…

Platform:
ATX form-factor, abit KN9-SLI motherboard, AMD A64 x2 4400+ 
(2.3GHz) CPU, 2GB 800MHz DDR2, 2GHz HyperTransport system bus,
2xPCIe x16 slots, 600W P/S,
WinXP Professional.

GPU:
I - 2x eVGA GeForce 8800 GS (1xGPU), 96x stream processors, 384MB 
memory, 192b memory interface, 38.4Gb/s memory bandwidth,
II - 2x eVGA GeForce 9800 GX-2 (2xGPU), 256x stream processors, 1-
GB memory, 512b memory interface, 128Gb/s memory bandwidth,
Operated in non-SLI mode, (1xGPU interleaved with display).

Software:
MATLAB 7.3 (2006b),
MicroSoft Visual Studio C++ 2005 Express,
NVIDIA CUDA + SDK + Profiler.



Benchmark Test (I)…

Fourier pseudospectral simulation – 2D fluid 
dynamics (C. Bretherton, Univ. Washington)

GPU-based application is virtualized inform of standard 
MATLAB function-call, based upon ‘MATLAB EXternal’
(MEX) API,
MEX-wrapper → CUDA (thread-scheduled ‘C’) → Compile 
+ Link against MATLAB + CUDA libraries → DLL; access 
MicroSoft Visual C++ runtime libraries.
Algorithm is ‘2D FFT-Intensive’, (i.e. uses optimized 
NVIDIA CUFFT libraries),
Extensible to arbitrary coarse/fine-grained MATLAB model 
components.



Benchmark Test Results (I)…
20x CFD Speedup 
w/Single GPU + 
MATLAB harness!

2.3GHz WinXP + 8800-GS



Benchmark Test (II)…

Black-Scholes Monte Carlo Simulation..
GPA-based application is virtualized inform of standard MATLAB 
function-call, based upon ‘MATLAB EXternal’ (MEX) API,
MEX-wrapper → CUDA (thread-scheduled ‘C’) → Compile + Link 
against MATLAB + CUDA libraries → DLL; access MicroSoft 
Visual C++ runtime libraries.
ePX scatter-gather distributes random variate processing to GPA 
elements based upon detection of ‘NGPU’ GPUs.
Simulation results are ‘binned’ in post-processing step and 
passed back to MATLAB environment, (i.e. for plot generation, or
subsequent simulation processing),
Conceptual basis for MATLAB as generic application delivery 
platform.

Extensible to ‘SciLab’, ‘RLab’, ‘SOFA’, and ‘Octave’ applications.



Benchmark Test Results (II)
Black-Scholes: 3x107 Options - 2.3GHz WinXP Dual 8800-GS - 821x Acceleration!



Summary..
enParallel (ePX) DSC is really a new class of supercomputer!

Based upon CPU/GPA architectural template,
Synergizes with SMP (multicore) and distributed (cluster) processing models,
Builds upon traditional supercomputing technique:

CPU/GPA process pipelining, scatter-gather, hierarchical (coarse/fine-grained) 
parallelization.

Excellent GPA/Cluster scaling properties.
The focus is acceleration of complex scientific applications incorporating 
diverse algorithmic kernels.

Distinct from standard CPU/GPU-Coprocessor model,
Enables efficient parallel-processing over diverse algorithmic kernels.

Major advantages over competing acceleration technologies..
FPGA-based accelerators,

Essentially an algorithmic ‘point’ solution, (re: complex and relatively unavailable partial 
reconfiguration technology, and implicit architectural specificity).
Problematic and complex development flow,
Nominally rudimentary memory model, (i.e. significantly limits processing model options).

multicore CPU (SMP),
GPU exhibits; (1) significantly higher parallelism, and (2) superior performance when 
applied to kernels for which the SIMD/SIMT processing model is optimal.


	enParallel, Inc. Desktop Supercomputing Technology
	10,000-foot View - I
	10,000-foot View - II
	10,000-foot View - III
	Graphics Acceleration is�Driving PC Evolution..
	CPU/GPU System Architecture..
	GPU Advantages..
	GPU Hardware Architecture I
	GPU Hardware Architecture II
	Desktop SuperComputer (DSC)�Processing Model I
	DSC Processing Model II
	Desktop SuperComputer�Processing Model III
	DSC Processing Model IV.. (Theory)
	Dynamic-Dataflow Design Representation..
	Cluster Architecture..
	Cluster Processing Model..
	Cluster/multicore-CPU/GPA Composite Process Schedule..
	GPA-based Benchmark Projections
	Prototype Test Platforms…
	Benchmark Test (I)…
	Benchmark Test Results (I)…
	Benchmark Test (II)…
	Benchmark Test Results (II)
	Summary..

